Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization
نویسندگان
چکیده
منابع مشابه
Multiplicative Noise Removal Using Self-organizing Maps
This paper approaches the problem of image denoising from an Independent Component Analysis (ICA) perspective. Considering that the pixels intensity constituting the crude images represents the useful signal corrupted with noise, we show that, a nonlinear ICA-based approach can provide a satisfactory solution to the NonLinear Blind Source Separation problem (NLBSS). SelfOrganizing Maps (SOMs) a...
متن کاملMultiplicative noise removal using primal–dual and reweighted alternating minimization
Multiplicative noise removal is an important research topic in image processing field. An algorithm using reweighted alternating minimization to remove this kind of noise is proposed in our preliminary work. While achieving good results, a small parameter is needed to avoid the denominator vanishing. We find that the parameter has important influence on numerical results and has to be chosen ca...
متن کاملMultiplicative Noise Removal Using L1 Fidelity on Frame Coefficients
We address the denoising of images contaminated with multiplicative noise, e.g. speckle noise. Classical ways to solve such problems are filtering, statistical (Bayesian) methods, variational methods, and methods that convert the multiplicative noise into additive noise (using a logarithmic function), apply a variational method on the log data or shrink their coefficients in a frame (e.g. a wav...
متن کاملAdaptive tight frame based multiplicative noise removal
Sparse approximation has shown to be a significant tool in improving image restoration quality, assuming that the targeted images can be approximately sparse under some transform operators. However, it is impossible for a fixed system to be always optimal for all the images. In this paper, we present an adaptive wavelet tight frame technology for sparse representation of an image with multiplic...
متن کاملFast algorithm for multiplicative noise removal
In this work, we consider a variational restoration model for multiplicative noise removal problem. By using a maximum a posteriori estimator, we propose a strictly convex objective functional whose minimizer corresponds to the denoised image we want to recover. We incorporate the anisotropic total variation regularization in the objective functional in order to preserve the edges well. A fast ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2010
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2010.2045029